Topic Models in R
نویسندگان
چکیده
Topic models are a popular method for modeling the term frequency occurrences in documents. The fitted model allows to better estimate the similarity between documents as well as between a set of specified keywords using an additional layer of latent variables which are referred to as topics. The R package topicmodels provides basic infrastructure for fitting topic models based on data structures introduced in the text mining package tm. The package includes interfaces to two algorithms for fitting topic models provided by David M. ̃Blei in C and one algorithm by Xuan-Hieu Phan in C++.
منابع مشابه
Estimation of Return to Scale under Weight Restrictions in Data Envelopment Analysis
Return-To-Scale (RTS) is a most important topic in DEA. Many methods are not obtained for estimating RTS in DEA, yet. In this paper has developed the Banker-Trall approach to identify situation for RTS for the BCC model "multiplier form" with virtual weight restrictions that are imposed to model by DM judgments. Imposing weight restrictions to DEA models often has created problem of infeasibili...
متن کاملیک مدل موضوعی احتمالاتی مبتنی بر روابط محلّی واژگان در پنجرههای همپوشان
A probabilistic topic model assumes that documents are generated through a process involving topics and then tries to reverse this process, given the documents and extract topics. A topic is usually assumed to be a distribution over words. LDA is one of the first and most popular topic models introduced so far. In the document generation process assumed by LDA, each document is a distribution o...
متن کاملThe Comparison of Credit Risk between Artificial Neural Network and Logistic Regression Models in Tose-Taavon Bank in Guilan
One of the most important issues always facing banks and financial institutes is the issue of credit risk or the possibility of failure in the fulfillment of obligations by applicants who are receiving credit facilities. The considerable number of banks’ delayed loan payments all around the world shows the importance of this issue and the necessary consideration of this topic. Accordingly...
متن کاملSustainable Supply Chain Network Design: A Review on Quantitative Models Using Content Analysis
The purpose of this paper is to develop a systematic literature review on the subject of sustainable supply chain network design during 1990-2016, through a review of 261 papers. In this study, qualitative technique for conducting a systematic literature review was used. To systematize and make the literature review more accurate, content analysis method was used that include data collect...
متن کاملA Joint Semantic Vector Representation Model for Text Clustering and Classification
Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...
متن کاملTraffic Scene Analysis using Hierarchical Sparse Topical Coding
Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009